Let n≥3 be a given integer, and let a1,a2,⋯,a2n,b1,b2,⋯,b2n be 4n nonnegative reals, such that a1+a2+⋯+a2n=b1+b2+⋯+b2n>0, and for any i=1,2,⋯,2n, aiai+2≥bi+bi+1, where a2n+1=a1, a2n+2=a2, b2n+1=b1. Detemine the minimum of a1+a2+⋯+a2n. algebrainequalitiesn-variable inequality