MathDB
Problems
Contests
National and Regional Contests
China Contests
China National Olympiad
1989 China National Olympiad
2
2
Part of
1989 China National Olympiad
Problems
(1)
China Mathematical Olympiad 1989 problem2
Source: China Mathematical Olympiad 1989 problem2
10/28/2013
Let
x
1
,
x
2
,
…
,
x
n
x_1, x_2, \dots ,x_n
x
1
,
x
2
,
…
,
x
n
(
n
≥
2
n\ge 2
n
≥
2
) be positive real numbers satisfying
∑
i
=
1
n
x
i
=
1
\sum^{n}_{i=1}x_i=1
∑
i
=
1
n
x
i
=
1
. Prove that:
∑
i
=
1
n
x
i
1
−
x
i
≥
∑
i
=
1
n
x
i
n
−
1
.
\sum^{n}_{i=1}\dfrac{x_i}{\sqrt{1-x_i}}\ge \dfrac{\sum_{i=1}^{n}\sqrt{x_i}}{\sqrt{n-1}}.
i
=
1
∑
n
1
−
x
i
x
i
≥
n
−
1
∑
i
=
1
n
x
i
.
inequalities