Suppose θi∈(−2π,2π),i=1,2,3,4. Prove that, there exist x∈R, satisfying two inequalities \begin{eqnarray*} \cos^2\theta_1\cos^2\theta_2-(\sin\theta\sin\theta_2-x)^2 &\geq& 0, \\ \cos^2\theta_3\cos^2\theta_4-(\sin\theta_3\sin\theta_4-x)^2 & \geq & 0 \end{eqnarray*}
if and only if i=1∑4sin2θi≤2(1+i=1∏4sinθi+i=1∏4cosθi). inequalitiestrigonometryinequalities unsolved