MathDB
Problems
Contests
National and Regional Contests
China Contests
China National Olympiad
2022 China National Olympiad
6
6
Part of
2022 China National Olympiad
Problems
(1)
Coefficients divisible by 3
Source: CMO 2022 P6
12/22/2021
For integers
0
≤
a
≤
n
0\le a\le n
0
≤
a
≤
n
, let
f
(
n
,
a
)
f(n,a)
f
(
n
,
a
)
denote the number of coefficients in the expansion of
(
x
+
1
)
a
(
x
+
2
)
n
−
a
(x+1)^a(x+2)^{n-a}
(
x
+
1
)
a
(
x
+
2
)
n
−
a
that is divisible by
3.
3.
3.
For example,
(
x
+
1
)
3
(
x
+
2
)
1
=
x
4
+
5
x
3
+
9
x
2
+
7
x
+
2
(x+1)^3(x+2)^1=x^4+5x^3+9x^2+7x+2
(
x
+
1
)
3
(
x
+
2
)
1
=
x
4
+
5
x
3
+
9
x
2
+
7
x
+
2
, so
f
(
4
,
3
)
=
1
f(4,3)=1
f
(
4
,
3
)
=
1
. For each positive integer
n
n
n
, let
F
(
n
)
F(n)
F
(
n
)
be the minimum of
f
(
n
,
0
)
,
f
(
n
,
1
)
,
…
,
f
(
n
,
n
)
f(n,0),f(n,1),\ldots ,f(n,n)
f
(
n
,
0
)
,
f
(
n
,
1
)
,
…
,
f
(
n
,
n
)
.(1) Prove that there exist infinitely many positive integer
n
n
n
such that
F
(
n
)
≥
n
−
1
3
F(n)\ge \frac{n-1}{3}
F
(
n
)
≥
3
n
−
1
.(2) Prove that for any positive integer
n
n
n
,
F
(
n
)
≤
n
−
1
3
F(n)\le \frac{n-1}{3}
F
(
n
)
≤
3
n
−
1
.
polynomial
algebra