MathDB
Problems
Contests
National and Regional Contests
China Contests
China Team Selection Test
1999 China Team Selection Test
1999 China Team Selection Test
Part of
China Team Selection Test
Subcontests
(3)
3
2
Hide problems
China TST 1999 any 3-element subset
Let
S
=
{
1
,
2
,
…
,
15
}
S = \lbrace 1, 2, \ldots, 15 \rbrace
S
=
{
1
,
2
,
…
,
15
}
. Let
A
1
,
A
2
,
…
,
A
n
A_1, A_2, \ldots, A_n
A
1
,
A
2
,
…
,
A
n
be
n
n
n
subsets of
S
S
S
which satisfy the following conditions: I.
∣
A
i
∣
=
7
,
i
=
1
,
2
,
…
,
n
|A_i| = 7, i = 1, 2, \ldots, n
∣
A
i
∣
=
7
,
i
=
1
,
2
,
…
,
n
; II.
∣
A
i
∩
A
j
∣
≤
3
,
1
≤
i
<
j
≤
n
|A_i \cap A_j| \leq 3, 1 \leq i < j \leq n
∣
A
i
∩
A
j
∣
≤
3
,
1
≤
i
<
j
≤
n
III. For any 3-element subset
M
M
M
of
S
S
S
, there exists
A
k
A_k
A
k
such that
M
⊂
A
k
M \subset A_k
M
⊂
A
k
. Find the smallest possible value of
n
n
n
.
Permutation Minimum and Maximum
For every permutation
τ
\tau
τ
of
1
,
2
,
…
,
10
1, 2, \ldots, 10
1
,
2
,
…
,
10
, \tau \equal{} (x_1, x_2, \ldots, x_{10}), define S(\tau) \equal{} \sum_{k \equal{} 1}^{10} |2x_k \minus{} 3x_{k \minus{} 1}|. Let x_{11} \equal{} x_1. Find I. The maximum and minimum values of
S
(
τ
)
S(\tau)
S
(
τ
)
. II. The number of
τ
\tau
τ
which lets
S
(
τ
)
S(\tau)
S
(
τ
)
attain its maximum. III. The number of
τ
\tau
τ
which lets
S
(
τ
)
S(\tau)
S
(
τ
)
attain its minimum.
2
2
Hide problems
p = kq + r and a^2 | r
Find all prime numbers
p
p
p
which satisfy the following condition: For any prime
q
<
p
q < p
q
<
p
, if
p
=
k
q
+
r
,
0
≤
r
<
q
p = kq + r, 0 \leq r < q
p
=
k
q
+
r
,
0
≤
r
<
q
, there does not exist an integer
q
>
1
q > 1
q
>
1
such that
a
2
∣
r
a^{2} \mid r
a
2
∣
r
.
China TST 1999 sequence
For a fixed natural number
m
≥
2
m \geq 2
m
≥
2
, prove that a.) There exists integers
x
1
,
x
2
,
…
,
x
2
m
x_1, x_2, \ldots, x_{2m}
x
1
,
x
2
,
…
,
x
2
m
such that
x
i
x
m
+
i
=
x
i
+
1
x
m
+
i
−
1
+
1
,
i
=
1
,
2
,
…
,
m
(
∗
)
x_i x_{m + i} = x_{i + 1} x_{m + i - 1} + 1, i = 1, 2, \ldots, m \hspace{2cm}(*)
x
i
x
m
+
i
=
x
i
+
1
x
m
+
i
−
1
+
1
,
i
=
1
,
2
,
…
,
m
(
∗
)
b.) For any set of integers
{
x
1
,
x
2
,
…
,
x
2
m
\lbrace x_1, x_2, \ldots, x_{2m}
{
x
1
,
x
2
,
…
,
x
2
m
which fulfils (*), an integral sequence
…
,
y
−
k
,
…
,
y
−
1
,
y
0
,
y
1
,
…
,
y
k
,
…
\ldots, y_{-k}, \ldots, y_{-1}, y_0, y_1, \ldots, y_k, \ldots
…
,
y
−
k
,
…
,
y
−
1
,
y
0
,
y
1
,
…
,
y
k
,
…
can be constructed such that
y
k
y
m
+
k
=
y
k
+
1
y
m
+
k
−
1
+
1
,
k
=
0
,
±
1
,
±
2
,
…
y_k y_{m + k} = y_{k + 1} y_{m + k - 1} + 1, k = 0, \pm 1, \pm 2, \ldots
y
k
y
m
+
k
=
y
k
+
1
y
m
+
k
−
1
+
1
,
k
=
0
,
±
1
,
±
2
,
…
such that
y
i
=
x
i
,
i
=
1
,
2
,
…
,
2
m
y_i = x_i, i = 1, 2, \ldots, 2m
y
i
=
x
i
,
i
=
1
,
2
,
…
,
2
m
.
1
2
Hide problems
another circle which passes through E and F
A circle is tangential to sides
A
B
AB
A
B
and
A
D
AD
A
D
of convex quadrilateral
A
B
C
D
ABCD
A
BC
D
at
G
G
G
and
H
H
H
respectively, and cuts diagonal
A
C
AC
A
C
at
E
E
E
and
F
F
F
. What are the necessary and sufficient conditions such that there exists another circle which passes through
E
E
E
and
F
F
F
, and is tangential to
D
A
DA
D
A
and
D
C
DC
D
C
extended?
Sum of differences of fourth and fifth powers
For non-negative real numbers
x
1
,
x
2
,
…
,
x
n
x_1, x_2, \ldots, x_n
x
1
,
x
2
,
…
,
x
n
which satisfy
x
1
+
x
2
+
⋯
+
x
n
=
1
x_1 + x_2 + \cdots + x_n = 1
x
1
+
x
2
+
⋯
+
x
n
=
1
, find the largest possible value of
∑
j
=
1
n
(
x
j
4
−
x
j
5
)
\sum_{j = 1}^{n} (x_j^{4} - x_j^{5})
∑
j
=
1
n
(
x
j
4
−
x
j
5
)
.