MathDB
Problems
Contests
National and Regional Contests
China Contests
China Team Selection Test
2024 China Team Selection Test
18
18
Part of
2024 China Team Selection Test
Problems
(1)
Finally an Inequality
Source: 2024 CTST P18
3/25/2024
Let
m
,
n
∈
Z
≥
0
,
m,n\in\mathbb Z_{\ge 0},
m
,
n
∈
Z
≥
0
,
a
0
,
a
1
,
…
,
a
m
,
b
0
,
b
1
,
…
,
b
n
∈
R
≥
0
a_0,a_1,\ldots ,a_m,b_0,b_1,\ldots ,b_n\in\mathbb R_{\ge 0}
a
0
,
a
1
,
…
,
a
m
,
b
0
,
b
1
,
…
,
b
n
∈
R
≥
0
For any integer
0
≤
k
≤
m
+
n
,
0\le k\le m+n,
0
≤
k
≤
m
+
n
,
define
c
k
:
=
max
i
+
j
=
k
a
i
b
j
.
c_k:=\max_{i+j=k}a_ib_j.
c
k
:=
max
i
+
j
=
k
a
i
b
j
.
Proof
1
m
+
n
+
1
∑
k
=
0
m
+
n
c
k
≥
1
(
m
+
1
)
(
n
+
1
)
∑
i
=
0
m
a
i
∑
j
=
0
n
b
j
.
\frac 1{m+n+1}\sum_{k=0}^{m+n}c_k\ge\frac 1{(m+1)(n+1)}\sum_{i=0}^{m}a_i\sum_{j=0}^{n}b_j.
m
+
n
+
1
1
k
=
0
∑
m
+
n
c
k
≥
(
m
+
1
)
(
n
+
1
)
1
i
=
0
∑
m
a
i
j
=
0
∑
n
b
j
.
2024 CTST
inequalities
conbinatorics