MathDB
Problems
Contests
National and Regional Contests
China Contests
China Western Mathematical Olympiad
2015 China Western Mathematical Olympiad
1
1
Part of
2015 China Western Mathematical Olympiad
Problems
(1)
China Western Mathematical Olympiad 2015 ,Problem 1
Source: China Yinchuan Aug 16, 2015
8/17/2015
Let the integer
n
≥
2
n \ge 2
n
≥
2
, and
x
1
,
x
2
,
⋯
,
x
n
x_1,x_2,\cdots,x_n
x
1
,
x
2
,
⋯
,
x
n
be real numbers such that
∑
k
=
1
n
x
k
\sum_{k=1}^nx_k
∑
k
=
1
n
x
k
be integer .
d
k
=
min
m
∈
Z
∣
x
k
−
m
∣
d_k=\underset{m\in {Z}}{\min}\left|x_k-m\right|
d
k
=
m
∈
Z
min
∣
x
k
−
m
∣
,
1
≤
k
≤
n
1\leq k\leq n
1
≤
k
≤
n
.Find the maximum value of
∑
k
=
1
n
d
k
\sum_{k=1}^nd_k
∑
k
=
1
n
d
k
.
inequalities
algebra