MathDB
Problems
Contests
National and Regional Contests
China Contests
China Western Mathematical Olympiad
2019 China Western Mathematical Olympiad
4
4
Part of
2019 China Western Mathematical Olympiad
Problems
(1)
Sum of distances to nearest integer
Source: 2019 CWMI P4
8/13/2019
Let
n
n
n
be a given integer such that
n
≥
2
n\ge 2
n
≥
2
. Find the smallest real number
λ
\lambda
λ
with the following property: for any real numbers
x
1
,
x
2
,
…
,
x
n
∈
[
0
,
1
]
x_1,x_2,\ldots ,x_n\in [0,1]
x
1
,
x
2
,
…
,
x
n
∈
[
0
,
1
]
, there exists integers
ε
1
,
ε
2
,
…
,
ε
n
∈
{
0
,
1
}
\varepsilon_1,\varepsilon_2,\ldots ,\varepsilon_n\in\{0,1\}
ε
1
,
ε
2
,
…
,
ε
n
∈
{
0
,
1
}
such that the inequality
∣
∑
k
=
i
j
(
ε
k
−
x
k
)
∣
≤
λ
\left\vert \sum^j_{k=i} (\varepsilon_k-x_k)\right\vert\le \lambda
k
=
i
∑
j
(
ε
k
−
x
k
)
≤
λ
holds for all pairs of integers
(
i
,
j
)
(i,j)
(
i
,
j
)
where
1
≤
i
≤
j
≤
n
1\le i\le j\le n
1
≤
i
≤
j
≤
n
.
inequalities