MathDB
Problems
Contests
National and Regional Contests
China Contests
South East Mathematical Olympiad
2013 South East Mathematical Olympiad
8
8
Part of
2013 South East Mathematical Olympiad
Problems
(1)
China South East Mathematical Olympiad 2013 problem 8
Source:
8/10/2013
n
≥
3
n\geq 3
n
≥
3
is a integer.
α
,
β
,
γ
∈
(
0
,
1
)
\alpha,\beta,\gamma \in (0,1)
α
,
β
,
γ
∈
(
0
,
1
)
. For every
a
k
,
b
k
,
c
k
≥
0
(
k
=
1
,
2
,
…
,
n
)
a_k,b_k,c_k\geq0(k=1,2,\dotsc,n)
a
k
,
b
k
,
c
k
≥
0
(
k
=
1
,
2
,
…
,
n
)
with
∑
k
=
1
n
(
k
+
α
)
a
k
≤
α
,
∑
k
=
1
n
(
k
+
β
)
b
k
≤
β
,
∑
k
=
1
n
(
k
+
γ
)
c
k
≤
γ
\sum\limits_{k=1}^n(k+\alpha)a_k\leq \alpha, \sum\limits_{k=1}^n(k+\beta)b_k\leq \beta, \sum\limits_{k=1}^n(k+\gamma)c_k\leq \gamma
k
=
1
∑
n
(
k
+
α
)
a
k
≤
α
,
k
=
1
∑
n
(
k
+
β
)
b
k
≤
β
,
k
=
1
∑
n
(
k
+
γ
)
c
k
≤
γ
, we always have
∑
k
=
1
n
(
k
+
λ
)
a
k
b
k
c
k
≤
λ
\sum\limits_{k=1}^n(k+\lambda)a_kb_kc_k\leq \lambda
k
=
1
∑
n
(
k
+
λ
)
a
k
b
k
c
k
≤
λ
. Find the minimum of
λ
\lambda
λ
algebra unsolved
algebra