MathDB
Problems
Contests
National and Regional Contests
China Contests
XES Mathematics Olympiad
the 14th XMO
P1
P1
Part of
the 14th XMO
Problems
(1)
Rounding distances
Source: 14th XMO P1
1/14/2024
Nonnegative reals
x
1
x_1
x
1
,
x
2
x_2
x
2
,
…
\dots
…
,
x
n
x_n
x
n
satisfies
x
1
+
x
2
+
⋯
+
x
n
=
n
x_1+x_2+\dots+x_n=n
x
1
+
x
2
+
⋯
+
x
n
=
n
. Let
∣
∣
x
∣
∣
||x||
∣∣
x
∣∣
be the distance from
x
x
x
to the nearest integer of
x
x
x
(e.g.
∣
∣
3.8
∣
∣
=
0.2
||3.8||=0.2
∣∣3.8∣∣
=
0.2
,
∣
∣
4.3
∣
∣
=
0.3
||4.3||=0.3
∣∣4.3∣∣
=
0.3
). Let
y
i
=
x
i
∣
∣
x
i
∣
∣
y_i = x_i ||x_i||
y
i
=
x
i
∣∣
x
i
∣∣
. Find the maximum value of
∑
i
=
1
n
y
i
2
\sum_{i=1}^n y_i^2
∑
i
=
1
n
y
i
2
.
inequalities