MathDB
Problems
Contests
National and Regional Contests
China Contests
XES Mathematics Olympiad
the 16th XMO
1
1
Part of
the 16th XMO
Problems
(1)
Tricky Algebra
Source: 16th XMO P1
6/20/2024
Let
a
1
,
a
2
,
…
,
a
n
≥
0.
a_1,a_2,\ldots ,a_n\ge 0.
a
1
,
a
2
,
…
,
a
n
≥
0.
For all
1
≤
k
≤
n
1\le k\le n
1
≤
k
≤
n
define
b
k
:
=
min
1
≤
i
<
j
≤
n
,
j
−
i
≤
2
∣
2
a
k
−
a
i
−
a
j
∣
.
b_k:=\min_{1\le i<j\le n,j-i\le 2}|2a_k-a_i-a_j|.
b
k
:=
1
≤
i
<
j
≤
n
,
j
−
i
≤
2
min
∣2
a
k
−
a
i
−
a
j
∣.
Here the index mod
n
.
n.
n
.
Find the maximum value of
b
1
+
b
2
+
⋯
+
b
n
a
1
+
a
2
+
⋯
+
a
n
.
\frac{b_1+b_2+\cdots +b_n}{a_1+a_2+\cdots +a_n}.
a
1
+
a
2
+
⋯
+
a
n
b
1
+
b
2
+
⋯
+
b
n
.
Proposed by Zheng Wang
inequalities