MathDB
Problems
Contests
National and Regional Contests
Costa Rica Contests
Costa Rica - Final Round
2006 Costa Rica - Final Round
3
3
Part of
2006 Costa Rica - Final Round
Problems
(1)
Prove the existence of this triangle.
Source: Costarrican Math Olympiad 2006 - Problem 3.
5/20/2006
Let
A
B
C
ABC
A
BC
be a triangle. Let
P
,
Q
,
R
P, Q, R
P
,
Q
,
R
be the midpoints of
B
C
,
C
A
,
A
B
BC, CA, AB
BC
,
C
A
,
A
B
respectively. Let
U
,
V
,
W
U, V, W
U
,
V
,
W
be the midpoints of
Q
R
,
R
P
,
P
Q
QR, RP, PQ
QR
,
RP
,
PQ
respectively. Let
x
=
A
U
,
y
=
B
V
,
z
=
C
W
x=AU, y=BV, z=CW
x
=
A
U
,
y
=
B
V
,
z
=
C
W
. Prove that there exist a triangle with sides
x
,
y
,
z
x, y, z
x
,
y
,
z
.
vector
geometry
parallelogram
geometry unsolved