Let x, y and z be non negative reals, such that there are not two simultaneously equal to 0. Show that
\frac {x \plus{} y}{y \plus{} z} \plus{} \frac {y \plus{} z}{x \plus{} y} \plus{} \frac {y \plus{} z}{z \plus{} x} \plus{} \frac {z \plus{} x}{y \plus{} z} \plus{} \frac {z \plus{} x}{x \plus{} y} \plus{} \frac {x \plus{} y}{z \plus{} x}\geq\ 5 \plus{} \frac {x^{2} \plus{} y^{2} \plus{} z^{2}}{xy \plus{} yz \plus{} zx}
and determine the equality cases. inequalities unsolvedinequalities