MathDB
Problems
Contests
National and Regional Contests
France Contests
French Mathematical Olympiad
1986 French Mathematical Olympiad
Problem 3
Problem 3
Part of
1986 French Mathematical Olympiad
Problems
(1)
complex inequalities, |z|+|w|≤|z+w|+|z-w|
Source: France 1986 P3
5/19/2021
(a) Prove or find a counter-example: For every two complex numbers
z
,
w
z,w
z
,
w
the following inequality holds:
∣
z
∣
+
∣
w
∣
≤
∣
z
+
w
∣
+
∣
z
−
w
∣
.
|z|+|w|\le|z+w|+|z-w|.
∣
z
∣
+
∣
w
∣
≤
∣
z
+
w
∣
+
∣
z
−
w
∣.
(b) Prove that for all
z
1
,
z
2
,
z
3
,
z
4
∈
C
z_1,z_2,z_3,z_4\in\mathbb C
z
1
,
z
2
,
z
3
,
z
4
∈
C
:
∑
k
=
1
4
∣
z
k
∣
≤
∑
1
≤
i
<
j
≤
4
∣
z
i
+
z
j
∣
.
\sum_{k=1}^4|z_k|\le\sum_{1\le i<j\le4}|z_i+z_j|.
k
=
1
∑
4
∣
z
k
∣
≤
1
≤
i
<
j
≤
4
∑
∣
z
i
+
z
j
∣.
inequalities
Complex number
complex inequality
algebra