MathDB
Problems
Contests
National and Regional Contests
France Contests
French Mathematical Olympiad
1991 French Mathematical Olympiad
Problem 1
Problem 1
Part of
1991 French Mathematical Olympiad
Problems
(1)
1^p+2^p+...+n^p square
Source: France 1991 P1
5/14/2021
(a) Suppose that
x
n
(
n
≥
0
)
x_n~(n\ge0)
x
n
(
n
≥
0
)
is a sequence of real numbers with the property that
x
0
3
+
x
1
3
+
…
+
x
n
3
=
(
x
0
+
x
1
+
…
+
x
n
)
2
x_0^3+x_1^3+\ldots+x_n^3=(x_0+x_1+\ldots+x_n)^2
x
0
3
+
x
1
3
+
…
+
x
n
3
=
(
x
0
+
x
1
+
…
+
x
n
)
2
for each
n
∈
N
n\in\mathbb N
n
∈
N
. Prove that for each
n
∈
N
0
n\in\mathbb N_0
n
∈
N
0
there exists
m
∈
N
0
m\in\mathbb N_0
m
∈
N
0
such that
x
0
+
x
1
+
…
+
x
n
=
m
(
m
+
1
)
2
x_0+x_1+\ldots+x_n=\frac{m(m+1)}2
x
0
+
x
1
+
…
+
x
n
=
2
m
(
m
+
1
)
. (b) For natural numbers
n
n
n
and
p
p
p
, we define
S
n
,
p
=
1
p
+
2
p
+
…
+
n
p
S_{n,p}=1^p+2^p+\ldots+n^p
S
n
,
p
=
1
p
+
2
p
+
…
+
n
p
. Find all natural numbers
p
p
p
such that
S
n
,
p
S_{n,p}
S
n
,
p
is a perfect square for each
n
∈
N
n\in\mathbb N
n
∈
N
.
number theory