1
Part of 1978 Bundeswettbewerb Mathematik
Problems(2)
Bundeswettbewerb Mathematik 1978 Problem 1.1
Source: Bundeswettbewerb Mathematik 1978 Round 1
10/12/2022
A knight is modified so that it moves fields horizontally or vertically and fields in the perpendicular direction. It is placed on an infinite chessboard. If the knight returns to the initial field after moves, show that must be even.
combinatoricsChessboardknightEven
Bundeswettbewerb Mathematik 1978 Problem 2.1
Source: Bundeswettbewerb Mathematik 1978 Round 2
10/12/2022
Let be sides of a triangle. Prove that
and show that cannot be replaced with a smaller number.
inequalitiesTrianglealgebra