MathDB
Problems
Contests
National and Regional Contests
Greece Contests
Greece JBMO TST
2000 Greece JBMO TST
1
1
Part of
2000 Greece JBMO TST
Problems
(1)
3n+5/2n+3 irreducible,( \overline{xy}+12)(\overline{xy}-3) \in N => x+y=9
Source: Greece JBMO TST 2000 p1
6/17/2019
a) Prove that the fraction
3
n
+
5
2
n
+
3
\frac{3n+5}{2n+3}
2
n
+
3
3
n
+
5
is irreducible for every
n
∈
N
n \in N
n
∈
N
b) Let
x
,
y
x,y
x
,
y
be digits of decimal representation system with
x
>
0
x>0
x
>
0
, and
x
y
‾
+
12
x
y
‾
−
3
∈
N
\frac{\overline{xy}+12}{\overline{xy}-3}\in N
x
y
−
3
x
y
+
12
∈
N
, prove that
x
+
y
=
9
x+y=9
x
+
y
=
9
. Is the converse true?
Irreducible
number theory
Digits