MathDB
Problems
Contests
National and Regional Contests
Greece Contests
Greece JBMO TST
2000 Greece JBMO TST
4
4
Part of
2000 Greece JBMO TST
Problems
(1)
(s-c)/\sqrt{a}+(s-b)/\sqrt{c}+(s-a)/\sqrt{b}\ge (s-b)/\sqrt{a}+(s-c)/\sqrt{b}+
Source: Greece JBMO TST 2000 p4
6/17/2019
Let
a
,
b
,
c
a,b,c
a
,
b
,
c
be sidelengths with
a
≥
b
≥
c
a\ge b\ge c
a
≥
b
≥
c
and
s
≥
a
+
1
s\ge a+1
s
≥
a
+
1
where
s
s
s
be the semiperimeter of the triangle. Prove that
s
−
c
a
+
s
−
b
c
+
s
−
a
b
≥
s
−
b
a
+
s
−
c
b
+
s
−
a
c
\frac{s-c}{\sqrt{a}}+\frac{s-b}{\sqrt{c}}+\frac{s-a}{\sqrt{b}}\ge \frac{s-b}{\sqrt{a}}+\frac{s-c}{\sqrt{b}}+\frac{s-a}{\sqrt{c}}
a
s
−
c
+
c
s
−
b
+
b
s
−
a
≥
a
s
−
b
+
b
s
−
c
+
c
s
−
a
geometry
geometric inequality
inequalities