MathDB
Problems
Contests
National and Regional Contests
Greece Contests
Greece Junior Math Olympiad
1999 Greece Junior Math Olympiad
1999 Greece Junior Math Olympiad
Part of
Greece Junior Math Olympiad
Subcontests
(4)
4
1
Hide problems
last digit of sums of alternate sums of every subset of {1, 2, ...,10}
Define alternate sum of a set of real numbers
A
=
{
a
1
,
a
2
,
.
.
.
,
a
k
}
A =\{a_1,a_2,...,a_k\}
A
=
{
a
1
,
a
2
,
...
,
a
k
}
with
a
1
<
a
2
<
.
.
.
<
a
k
a_1 < a_2 <...< a_k
a
1
<
a
2
<
...
<
a
k
, the number
S
(
A
)
=
a
k
−
a
k
−
1
+
a
k
−
2
−
.
.
.
+
(
−
1
)
k
−
1
a
1
S(A) = a_k - a_{k-1} + a_{k-2} - ... + (-1)^{k-1}a_1
S
(
A
)
=
a
k
−
a
k
−
1
+
a
k
−
2
−
...
+
(
−
1
)
k
−
1
a
1
(for example if
A
=
{
1
,
2
,
5
,
7
}
A = \{1,2,5, 7\}
A
=
{
1
,
2
,
5
,
7
}
then
S
(
A
)
=
7
−
5
+
2
−
1
S(A) = 7 - 5 + 2 - 1
S
(
A
)
=
7
−
5
+
2
−
1
) Consider the alternate sums, of every subsets of
A
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
}
A = \{1, 2, 3, 4, 5, 6, 7, 8,9, 10\}
A
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
}
and sum them. What is the last digit of the sum obtained?
2
1
Hide problems
xy = nx+ny, min and max x in terms of n (Greece Junior 1999 p2)
Let
n
n
n
be a fixed positive integer and let
x
,
y
x, y
x
,
y
be positive integers such that
x
y
=
n
x
+
n
y
xy = nx+ny
x
y
=
n
x
+
n
y
. Determine the minimum and the maximum of
x
x
x
in terms of
n
n
n
.
1
1
Hide problems
a^{2000}+b^{2000}=a^{1998}+b^{1998} (Greece Junior 1999 p1)
Show that if
a
,
b
a,b
a
,
b
are positive real numbers such that
a
2000
+
b
2000
=
a
1998
+
b
1998
a^{2000}+b^{2000}=a^{1998}+b^{1998}
a
2000
+
b
2000
=
a
1998
+
b
1998
then a^2+b^2 \le 2.
3
1
Hide problems
AB=DB+BD_1, AC=CE+CE_1 in a equilateral (Greece Junior 1999)
Let
A
B
C
ABC
A
BC
be an equilateral triangle . Let point
D
D
D
lie on side
A
B
,
E
AB,E
A
B
,
E
lie on side
A
C
,
D
1
AC, D_1
A
C
,
D
1
and
E
1
E_1
E
1
lie on side BC such that
A
B
=
D
B
+
B
D
1
AB=DB+BD_1
A
B
=
D
B
+
B
D
1
and
A
C
=
C
E
+
C
E
1
AC=CE+CE_1
A
C
=
CE
+
C
E
1
. Calculate the smallest angle between the lines
D
E
1
DE_1
D
E
1
and
E
D
1
ED_1
E
D
1
.