MathDB
Problems
Contests
National and Regional Contests
Hungary Contests
Eotvos Mathematical Competition (Hungary)
1897 Eotvos Mathematical Competition
2
2
Part of
1897 Eotvos Mathematical Competition
Problems
(1)
Show that, if $\alpha$, $\beta$ and $\gamma$ are angles of an arbitrary triangle
Source: Eotvos 1897 p2
3/14/2020
Show that, if
α
\alpha
α
,
β
\beta
β
and
γ
\gamma
γ
are angles of an arbitrary triangle,
sin
α
2
sin
β
2
sin
γ
2
<
1
4
.
\text{sin } \frac{\alpha}{2} \text{ sin } \frac{\beta}{2} \text{ sin } \frac{\gamma}{2} < \frac14.
sin
2
α
sin
2
β
sin
2
γ
<
4
1
.
.
inequalities