MathDB
Problems
Contests
National and Regional Contests
Hungary Contests
Kürschák Math Competition
1969 Kurschak Competition
2
2
Part of
1969 Kurschak Competition
Problems
(1)
ABC is equilateral if a(1 - 2 cos A) + b(1 - 2 cos B) + c(1 - 2 cos C) = 0
Source: 1969 Hungary - Kürschák Competition p2
10/11/2022
A triangle has side lengths
a
,
b
,
c
a, b, c
a
,
b
,
c
and angles
A
,
B
,
C
A, B, C
A
,
B
,
C
as usual (with
b
b
b
opposite
B
B
B
etc). Show that if
a
(
1
−
2
cos
A
)
+
b
(
1
−
2
cos
B
)
+
c
(
1
−
2
cos
C
)
=
0
a(1 - 2 \cos A) + b(1 - 2 \cos B) + c(1 - 2 \cos C) = 0
a
(
1
−
2
cos
A
)
+
b
(
1
−
2
cos
B
)
+
c
(
1
−
2
cos
C
)
=
0
then the triangle is equilateral.
trigonometry
geometry
Equilateral