MathDB
Problems
Contests
National and Regional Contests
Hungary Contests
Kürschák Math Competition
2005 Kurschak Competition
1
1
Part of
2005 Kurschak Competition
Problems
(1)
Choice of indexes in a sequence
Source: Kürschák 2005, problem 1
7/13/2014
Let
N
>
1
N>1
N
>
1
and let
a
1
,
a
2
,
…
,
a
N
a_1,a_2,\dots,a_N
a
1
,
a
2
,
…
,
a
N
be nonnegative reals with sum at most
500
500
500
. Prove that there exist integers
k
≥
1
k\ge 1
k
≥
1
and
1
=
n
0
<
n
1
<
⋯
<
n
k
=
N
1=n_0<n_1<\dots<n_k=N
1
=
n
0
<
n
1
<
⋯
<
n
k
=
N
such that
∑
i
=
1
k
n
i
a
n
i
−
1
<
2005.
\sum_{i=1}^k n_ia_{n_{i-1}}<2005.
i
=
1
∑
k
n
i
a
n
i
−
1
<
2005.
probability
algebra unsolved
algebra