MathDB
Problems
Contests
National and Regional Contests
Hungary Contests
Kürschák Math Competition
2013 Kurschak Competition
3
3
Part of
2013 Kurschak Competition
Problems
(1)
Construction of a sequence, with a lower bound on |a_i-a_j|
Source: Kürschak 2013, problem 3
7/6/2014
Is it true that for integer
n
≥
2
n\ge 2
n
≥
2
, and given any non-negative reals
ℓ
i
j
\ell_{ij}
ℓ
ij
,
1
≤
i
<
j
≤
n
1\le i<j\le n
1
≤
i
<
j
≤
n
, we can find a sequence
0
≤
a
1
,
a
2
,
…
,
a
n
0\le a_1,a_2,\ldots,a_n
0
≤
a
1
,
a
2
,
…
,
a
n
such that for all
1
≤
i
<
j
≤
n
1\le i<j\le n
1
≤
i
<
j
≤
n
to have
∣
a
i
−
a
j
∣
≥
ℓ
i
j
|a_i-a_j|\ge \ell_{ij}
∣
a
i
−
a
j
∣
≥
ℓ
ij
, yet still
∑
i
=
1
n
a
i
≤
∑
1
≤
i
<
j
≤
n
ℓ
i
j
\sum_{i=1}^n a_i\le \sum_{1\le i<j\le n}\ell_{ij}
∑
i
=
1
n
a
i
≤
∑
1
≤
i
<
j
≤
n
ℓ
ij
?
combinatorics unsolved
combinatorics