MathDB

Problem 2

Part of 2019 LIMIT Category B

Problems(2)

units digit of factorial sum

Source: LIMIT 2019 CAS2 P7

4/28/2021
The digit in unit place of 1!+2!++99!1!+2!+\ldots+99! is <spanclass=latexbold>(A)</span> 3<span class='latex-bold'>(A)</span>~3 <spanclass=latexbold>(B)</span> 0<span class='latex-bold'>(B)</span>~0 <spanclass=latexbold>(C)</span> 1<span class='latex-bold'>(C)</span>~1 <spanclass=latexbold>(D)</span> 7<span class='latex-bold'>(D)</span>~7
factorialnumber theory
complex subsets

Source: LIMIT 2019 CBS2 P2

4/28/2021
Let C\mathbb C denote the set of all complex numbers. Define A={(z,w)z,wC and z=w}A=\{(z,w)|z,w\in\mathbb C\text{ and }|z|=|w|\}B={(z,w)z,wC and z2=w2}B=\{(z,w)|z,w\in\mathbb C\text{ and }z^2=w^2\}<spanclass=latexbold>(A)</span> A=B<span class='latex-bold'>(A)</span>~A=B <spanclass=latexbold>(B)</span> AB and AB<span class='latex-bold'>(B)</span>~A\subset B\text{ and }A\ne B <spanclass=latexbold>(C)</span> BA and BA<span class='latex-bold'>(C)</span>~B\subset A\text{ and }B\ne A <spanclass=latexbold>(D)</span> None of the above<span class='latex-bold'>(D)</span>~\text{None of the above}
complex numbersalgebra