MathDB

Problem 6

Part of 2019 LIMIT Category B

Problems(2)

differentiability of absolute value function at 0

Source: LIMIT 2019 CBS1 P6

4/28/2021
Let f(x)=a0+a1x+a2x2+a3x3f(x)=a_0+a_1|x|+a_2|x|^2+a_3|x|^3, where a0,a1,a2,a3a_0,a_1,a_2,a_3 are constant. Then <spanclass=latexbold>(A)</span> f(x) is differentiable at x=0 if whatever be a0,a1,a2,a3<span class='latex-bold'>(A)</span>~f(x)\text{ is differentiable at }x=0\text{ if whatever be }a_0,a_1,a_2,a_3 <spanclass=latexbold>(B)</span> f(x) is not differentiable at x=0 if whatever be a0,a1,a2,a3<span class='latex-bold'>(B)</span>~f(x)\text{ is not differentiable at }x=0\text{ if whatever be }a_0,a_1,a_2,a_3 <spanclass=latexbold>(C)</span> f(x) is differentiable at x=0 only if a1=0<span class='latex-bold'>(C)</span>~f(x)\text{ is differentiable at }x=0\text{ only if }a_1=0 <spanclass=latexbold>(D)</span> f(x) is differentiable at x=0 only if a1=0,a3=0<span class='latex-bold'>(D)</span>~f(x)\text{ is differentiable at }x=0\text{ only if }a_1=0,a_3=0
absolute valuefunctioncalculus
8n+1 perfect square, find conditions on n

Source: LIMIT 2019 CAS2 P8

4/28/2021
If nn is a positive integer such that 8n+18n+1 is a perfect square, then <spanclass=latexbold>(A)</span> n must be odd<span class='latex-bold'>(A)</span>~n\text{ must be odd} <spanclass=latexbold>(B)</span> n cannot be a perfect square<span class='latex-bold'>(B)</span>~n\text{ cannot be a perfect square} <spanclass=latexbold>(C)</span> n cannot be a perfect square<span class='latex-bold'>(C)</span>~n\text{ cannot be a perfect square} <spanclass=latexbold>(D)</span> None of the above<span class='latex-bold'>(D)</span>~\text{None of the above}
number theory