MathDB
Problems
Contests
National and Regional Contests
India Contests
India National Olympiad
1991 India National Olympiad
3
3
Part of
1991 India National Olympiad
Problems
(1)
Simple trignometry
Source: INMO 1991 Problem 3
10/3/2005
Given a triangle
A
B
C
ABC
A
BC
let \begin{eqnarray*} x &=& \tan\left(\dfrac{B-C}{2}\right) \tan \left(\dfrac{A}{2}\right) \\ y &=& \tan\left(\dfrac{C-A}{2}\right) \tan \left(\dfrac{B}{2}\right) \\ z &=& \tan\left(\dfrac{A-B}{2}\right) \tan \left(\dfrac{C}{2}\right). \end{eqnarray*} Prove that
x
+
y
+
z
+
x
y
z
=
0
x+ y + z + xyz = 0
x
+
y
+
z
+
x
yz
=
0
.
trigonometry