Given any four distinct positive real numbers, show that one can choose three numbers A,B,C from among them, such that all three quadratic equations \begin{eqnarray*} Bx^2 + x + C &=& 0\\ Cx^2 + x + A &=& 0 \\ Ax^2 + x +B &=& 0 \end{eqnarray*} have only real roots, or all three equations have only imaginary roots. quadraticsalgebra unsolvedalgebra