MathDB
Problems
Contests
National and Regional Contests
India Contests
India National Olympiad
2006 India National Olympiad
5
5
Part of
2006 India National Olympiad
Problems
(1)
In a cyclic quadrilateral ABCD, <ABC=120 degrees
Source: Indian National Maths Olympiad, Problem 5
2/5/2006
In a cyclic quadrilateral
A
B
C
D
ABCD
A
BC
D
,
A
B
=
a
AB=a
A
B
=
a
,
B
C
=
b
BC=b
BC
=
b
,
C
D
=
c
CD=c
C
D
=
c
,
∠
A
B
C
=
12
0
∘
\angle ABC = 120^\circ
∠
A
BC
=
12
0
∘
and
∠
A
B
D
=
3
0
∘
\angle ABD = 30^\circ
∠
A
B
D
=
3
0
∘
. Prove that (1)
c
≥
a
+
b
c \ge a + b
c
≥
a
+
b
; (2)
∣
c
+
a
−
c
+
b
∣
=
c
−
a
−
b
|\sqrt{c + a} - \sqrt{c + b} | = \sqrt{c - a - b}
∣
c
+
a
−
c
+
b
∣
=
c
−
a
−
b
.
trigonometry
inequalities
function
geometry
circumcircle
cyclic quadrilateral
geometry proposed