MathDB
Problems
Contests
National and Regional Contests
India Contests
India National Olympiad
2013 India National Olympiad
6
6
Part of
2013 India National Olympiad
Problems
(1)
a,b,c,x,y,z>0; a+b+c=x+y+z, abc=xyz
Source: INMO 2013 P6
2/3/2013
Let
a
,
b
,
c
,
x
,
y
,
z
a,b,c,x,y,z
a
,
b
,
c
,
x
,
y
,
z
be six positive real numbers satisfying
x
+
y
+
z
=
a
+
b
+
c
x+y+z=a+b+c
x
+
y
+
z
=
a
+
b
+
c
and
x
y
z
=
a
b
c
.
xyz=abc.
x
yz
=
ab
c
.
Further, suppose that
a
≤
x
<
y
<
z
≤
c
a\leq x<y<z\leq c
a
≤
x
<
y
<
z
≤
c
and
a
<
b
<
c
.
a<b<c.
a
<
b
<
c
.
Prove that
a
=
x
,
b
=
y
a=x,b=y
a
=
x
,
b
=
y
and
c
=
z
.
c=z.
c
=
z
.
algebra
polynomial
function
inequalities
logarithms
inequalities proposed