Let N denote set of all natural numbers and let f:N→N be a function such that(a)f(mn)=f(m).f(n) for all m,n∈N;(b)m+n divides f(m)+f(n) for all m,n∈N.Prove that, there exists an odd natural number k such that f(n)=nk for all n in N. number theoryfunctional equation