MathDB
Problems
Contests
National and Regional Contests
India Contests
India STEMS
2021 India STEMS
STEMS 2021 Math Cat C
Q4
Q4
Part of
STEMS 2021 Math Cat C
Problems
(1)
Minimal number of polynomials to write as SOS
Source: stems 2021 cat b/c p4
1/24/2021
Let
n
n
n
be a fixed positive integer. - Show that there exist real polynomials
p
1
,
p
2
,
p
3
,
⋯
,
p
k
∈
R
[
x
1
,
⋯
,
x
n
]
p_1, p_2, p_3, \cdots, p_k \in \mathbb{R}[x_1, \cdots, x_n]
p
1
,
p
2
,
p
3
,
⋯
,
p
k
∈
R
[
x
1
,
⋯
,
x
n
]
such that
(
x
1
+
x
2
+
⋯
+
x
n
)
2
+
p
1
(
x
1
,
⋯
,
x
n
)
2
+
p
2
(
x
1
,
⋯
,
x
n
)
2
+
⋯
+
p
k
(
x
1
,
⋯
,
x
n
)
2
=
n
(
x
1
2
+
x
2
2
+
⋯
+
x
n
2
)
(x_1 + x_2 + \cdots + x_n)^2 + p_1(x_1, \cdots, x_n)^2 + p_2(x_1, \cdots, x_n)^2 + \cdots + p_k(x_1, \cdots, x_n)^2 = n(x_1^2 + x_2^2 + \cdots + x_n^2)
(
x
1
+
x
2
+
⋯
+
x
n
)
2
+
p
1
(
x
1
,
⋯
,
x
n
)
2
+
p
2
(
x
1
,
⋯
,
x
n
)
2
+
⋯
+
p
k
(
x
1
,
⋯
,
x
n
)
2
=
n
(
x
1
2
+
x
2
2
+
⋯
+
x
n
2
)
- Find the least natural number
k
k
k
, depending on
n
n
n
, such that the above polynomials
p
1
,
p
2
,
⋯
,
p
k
p_1, p_2, \cdots, p_k
p
1
,
p
2
,
⋯
,
p
k
exist.
algebra
polynomial