MathDB
Problems
Contests
National and Regional Contests
India Contests
India STEMS
2021 India STEMS
STEMS 2021 Phy Cat C
Q3
Q3
Part of
STEMS 2021 Phy Cat C
Problems
(1)
STEMS 2021 Phy Cat C Q3
Source:
1/23/2021
Classical Probability Distribution for Quantum States? The goal of this problem is to try and mimic a Statistical Mechanics approach to Quantum Mechanics. In Classical Statistical Mechanics one has the usual Gibbs-Boltzmann Formula which gives the probability distribution in phase-space to be:
ρ
(
x
1
,
…
,
x
n
,
p
1
,
…
,
p
n
)
∼
exp
(
−
β
H
(
x
1
,
…
,
x
n
,
p
1
,
…
,
p
n
)
)
\rho(x_1,\dots,x_n,p_1,\dots,p_n) \sim \exp(-\beta H(x_1,\dots,x_n,p_1,\dots,p_n))
ρ
(
x
1
,
…
,
x
n
,
p
1
,
…
,
p
n
)
∼
exp
(
−
β
H
(
x
1
,
…
,
x
n
,
p
1
,
…
,
p
n
))
where
H
H
H
is the Hamiltonian of the system. [*] Why can't we demand a similar probability distribution over phase-space in Quantum Mechanics? \\ If the wave function
ψ
(
x
1
,
…
,
x
n
)
\psi(x_1,\dots,x_n)
ψ
(
x
1
,
…
,
x
n
)
is given, we construct the following expression: \begin{align*} \begin{split} & P(x_1,\dots,x_n,p_1,\dots,p_n) \\ & = \left(\frac{1}{\pi\hbar}\right)^n \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} dy_1\dots dy_n \psi^*(x_1+y_1,\dots,x_n+y_n) \\ & \times \psi(x_1-y_1,\dots,x_n-y_n) \exp\left(\frac{2i}{\hbar}(p_1y_1+\dots+p_ny_n)\right) \end{split} \end{align*}[/*] [*] Show that,
∫
−
∞
∞
⋯
∫
−
∞
∞
d
p
1
…
d
p
n
P
(
x
1
,
…
,
x
n
,
p
1
,
…
,
p
n
)
=
∣
ψ
(
x
1
,
…
,
x
n
)
∣
2
\int_{-\infty}^{\infty}\dots\int_{-\infty}^{\infty} dp_1\dots dp_n P(x_1,\dots,x_n,p_1,\dots,p_n) = \left|\psi(x_1,\dots,x_n)\right|^2
∫
−
∞
∞
⋯
∫
−
∞
∞
d
p
1
…
d
p
n
P
(
x
1
,
…
,
x
n
,
p
1
,
…
,
p
n
)
=
∣
ψ
(
x
1
,
…
,
x
n
)
∣
2
which are the correct probabilities for the co-ordinates. [/*][*] Show that,
∫
−
∞
∞
⋯
∫
−
∞
∞
d
x
1
…
d
x
n
P
(
x
1
,
…
,
x
n
,
p
1
,
…
,
p
n
)
=
∣
ψ
~
(
p
1
,
…
,
p
n
)
∣
2
\int_{-\infty}^{\infty}\dots\int_{-\infty}^{\infty} dx_1\dots dx_n \, P(x_1,\dots,x_n,p_1,\dots,p_n) = \left|\tilde{\psi}(p_1,\dots,p_n)\right|^2
∫
−
∞
∞
⋯
∫
−
∞
∞
d
x
1
…
d
x
n
P
(
x
1
,
…
,
x
n
,
p
1
,
…
,
p
n
)
=
ψ
~
(
p
1
,
…
,
p
n
)
2
which are the correct probabilities for the momenta where,
ψ
~
(
p
1
,
…
,
p
n
)
=
∫
−
∞
∞
⋯
∫
−
∞
∞
d
x
1
…
d
x
n
ψ
(
x
1
,
…
,
x
n
)
exp
(
−
i
ℏ
(
x
1
p
1
+
⋯
+
x
n
p
n
)
)
\tilde{\psi}(p_1,\dots,p_n) = \int_{-\infty}^{\infty}\dots\int_{-\infty}^{\infty} dx_1\dots dx_n \psi(x_1,\dots,x_n) \exp\left(-\frac{i}{\hbar}(x_1p_1+\dots+x_np_n)\right)
ψ
~
(
p
1
,
…
,
p
n
)
=
∫
−
∞
∞
⋯
∫
−
∞
∞
d
x
1
…
d
x
n
ψ
(
x
1
,
…
,
x
n
)
exp
(
−
ℏ
i
(
x
1
p
1
+
⋯
+
x
n
p
n
)
)
is the Fourier transform of the wave-function
ψ
(
x
1
,
…
,
x
n
)
\psi(x_1,\dots,x_n)
ψ
(
x
1
,
…
,
x
n
)
. [/*][*] The function
P
P
P
defined above therefore seems to be a good candidate for a probability distribution in Quantum Mechanics. Would this not contradict part (a)? Give reasons to support your answer. [/*]