MathDB
Problems
Contests
National and Regional Contests
India Contests
ISI B.Stat Entrance Exam
2011 ISI B.Stat Entrance Exam
1
1
Part of
2011 ISI B.Stat Entrance Exam
Problems
(1)
An easy ineq; ISI BS 2011, P1
Source:
3/31/2013
Let
x
1
,
x
2
,
⋯
,
x
n
x_1, x_2, \cdots , x_n
x
1
,
x
2
,
⋯
,
x
n
be positive reals with
x
1
+
x
2
+
⋯
+
x
n
=
1
x_1+x_2+\cdots+x_n=1
x
1
+
x
2
+
⋯
+
x
n
=
1
. Then show that
∑
i
=
1
n
x
i
2
−
x
i
≥
n
2
n
−
1
\sum_{i=1}^n \frac{x_i}{2-x_i} \ge \frac{n}{2n-1}
i
=
1
∑
n
2
−
x
i
x
i
≥
2
n
−
1
n
calculus
inequalities
rearrangement inequality
n-variable inequality