Consider the following subsets of the plane:C1={(x,y) : x>0 , y=x1} and C2={(x,y) : x<0 , y=−1+x1} Given any two points P=(x,y) and Q=(u,v) of the plane, their distance d(P,Q) is defined by d(P,Q)=(x−u)2+(y−v)2 Show that there exists a unique choice of points P0∈C1 and Q0∈C2 such that d(P_0,Q_0)\leqslant d(P,Q) \forall ~P\in C_1~\text{and}~Q\in C_2. isiIndian Statistical Institute2019distancecoordinate geometryreal analysis