MathDB
Problems
Contests
National and Regional Contests
India Contests
ISI Entrance Examination
2021 ISI Entrance Examination
5
5
Part of
2021 ISI Entrance Examination
Problems
(1)
A Polynomial Limit
Source: ISI 2021 P5
7/18/2021
Let
a
0
,
a
1
,
…
,
a
19
∈
R
a_0, a_1,\dots, a_{19} \in \mathbb{R}
a
0
,
a
1
,
…
,
a
19
∈
R
and
P
(
x
)
=
x
20
+
∑
i
=
0
19
a
i
x
i
,
x
∈
R
.
P(x) = x^{20} + \sum_{i=0}^{19}a_ix^i, x \in \mathbb{R}.
P
(
x
)
=
x
20
+
i
=
0
∑
19
a
i
x
i
,
x
∈
R
.
If
P
(
x
)
=
P
(
−
x
)
P(x)=P(-x)
P
(
x
)
=
P
(
−
x
)
for all
x
∈
R
x \in \mathbb{R}
x
∈
R
, and
P
(
k
)
=
k
2
,
P(k)=k^2,
P
(
k
)
=
k
2
,
for
k
=
0
,
1
,
2
,
…
,
9
k=0, 1, 2, \dots, 9
k
=
0
,
1
,
2
,
…
,
9
then find
lim
x
→
0
P
(
x
)
sin
2
x
.
\lim_{x\rightarrow 0} \frac{P(x)}{\sin^2x}.
x
→
0
lim
sin
2
x
P
(
x
)
.
algebra