Let ABCD be a quadrilateral with all the internal angles <π. Squares are drawn on each side as shown in the picture below. Let Δ1,Δ2,Δ3,Δ4 denote the areas of the shaded triangles as shown. Prove that Δ1−Δ2+Δ3−Δ4=0.
[asy]
//made from sweat and hardwork by SatisfiedMagma
import olympiad;
import geometry;size(250);pair A = (-3,0);
pair B = (0,2);
pair C = (5.88,0.44);
pair D = (0.96, -1.86);pair H = B + rotate(90)*(C-B);
pair G = C + rotate(270)*(B-C);pair J = C + rotate(90)*(D-C);
pair I = D + rotate(270)*(C-D);pair L = D + rotate(90)*(A-D);
pair K = A + rotate(270)*(D-A);pair F = A + rotate(90)*(B-A);
pair E = B + rotate(270)*(A-B);
draw(B--H--G--C--B, blue);
draw(C--J--I--D--C, red);
draw(B--E--F--A--B, orange);
draw(D--L--K--A--D, magenta);
draw(L--I, fuchsia); draw(J--G, fuchsia); draw(E--H, fuchsia); draw(F--K, fuchsia);pen lightFuchsia = deepgreen + 0.5*white;fill(D--L--I--cycle, lightFuchsia);
fill(A--K--F--cycle, lightFuchsia);
fill(E--B--H--cycle, lightFuchsia);
fill(C--J--G--cycle, lightFuchsia);label("△2", (E+B+H)/3);
label("△4", (D+L+I)/3);
label("△3", (C+G+J)/3);
label("△1", (A+F+K)/3);dot("A", A, S);
dot("B", B, S);
dot("C", C, S);
dot("D", D, N);
dot("H", H, dir(H));
dot("G", G, dir(G));
dot("J", J, dir(J));
dot("I", I, dir(I));
dot("L", L, dir(L));
dot("K", K, dir(K));
dot("F", F, dir(F));
dot("E", E, dir(E));
[/asy] geometryarea of a triangleISI 2024