MathDB
Problems
Contests
National and Regional Contests
India Contests
Regional Mathematical Olympiad
2002 India Regional Mathematical Olympiad
4
4
Part of
2002 India Regional Mathematical Olympiad
Problems
(1)
Partitioning
Source: Indian RMO 2002 Problem 4
10/27/2005
Suppose the integers
1
,
2
,
…
10
1,2,\ldots 10
1
,
2
,
…
10
are split into two disjoint collections
a
1
,
a
2
,
…
a
5
a_1,a_2, \ldots a_5
a
1
,
a
2
,
…
a
5
and
b
1
,
…
b
5
b_1 , \ldots b_5
b
1
,
…
b
5
such that
a
1
<
a
2
<
a
3
<
a
4
<
a
5
,
b
1
<
b
2
<
b
3
<
b
4
<
b
5
a_1 <a _2 < a_3 <a_4 <a _5 , b_1 < b_2 < b_3 < b_4 < b_5
a
1
<
a
2
<
a
3
<
a
4
<
a
5
,
b
1
<
b
2
<
b
3
<
b
4
<
b
5
(i) Show that the larger number in any pair
{
a
j
,
b
j
}
\{ a_j, b_j \}
{
a
j
,
b
j
}
,
1
≤
j
≤
5
1 \leq j \leq 5
1
≤
j
≤
5
is at least
6
6
6
. (ii) Show that
∑
i
=
1
5
∣
a
i
−
b
i
∣
\sum_{i=1} ^{5} | a_i - b_i|
∑
i
=
1
5
∣
a
i
−
b
i
∣
= 25 for every such partition.