MathDB
Problems
Contests
National and Regional Contests
Indonesia Contests
Indonesia Juniors
2004 Indonesia Juniors
2004 Indonesia Juniors
Part of
Indonesia Juniors
Subcontests
(2)
day 2
1
Hide problems
Indonesia Juniors 2004 day 2 OSN SMP
p1. A regular
6
6
6
-face dice is thrown three times. Calculate the probability that the number of dice points on all three throws is
12
12
12
? p2. Given two positive real numbers
x
x
x
and
y
y
y
with
x
y
=
1
xy = 1
x
y
=
1
. Determine the minimum value of
1
x
4
+
1
4
y
4
.
\frac{1}{x^4}+\frac{1}{4y^4}.
x
4
1
+
4
y
4
1
.
p3. Known a square network which is continuous and arranged in forming corners as in the following picture. Determine the value of the angle marked with the letter
x
x
x
. https://cdn.artofproblemsolving.com/attachments/6/3/aee36501b00c4aaeacd398f184574bd66ac899.pngp4. Find the smallest natural number
n
n
n
such that the sum of the measures of the angles of the
n
n
n
-gon, with
n
>
6
n > 6
n
>
6
is less than
n
2
n^2
n
2
degrees. p5. There are a few magic cards. By stating on which card a number is there, without looking at the card at all, someone can precisely guess the number. If the number is on Card
A
A
A
and
B
B
B
, then the number in question is
1
+
2
1 + 2
1
+
2
(sum of corner number top left) cards
A
A
A
and
B
B
B
. If the numbers are in
A
A
A
,
B
B
B
, and
C
C
C
, the number what is meant is
1
+
2
+
4
1 + 2 + 4
1
+
2
+
4
or equal to
7
7
7
(which is obtained by adding the numbers in the upper left corner of each card
A
A
A
,
B
B
B
, and
C
C
C
). https://cdn.artofproblemsolving.com/attachments/e/5/9e80d4f3bba36a999c819c28c417792fbeff18.png a. How can this be explained? b. Suppose we are going to make cards containing numbers from
1
1
1
to with
15
15
15
based on the rules above. Try making the cards.[hide=original wording for p5, as the wording isn't that clear]Ada suatu kartu ajaib. Dengan menyebutkan di kartu yang mana suatu bilan gan berada, tanpa melihat kartu sama sekali, seseorang dengan tepat bisa menebak bilangan yang dimaksud. Kalau bilangan tersebut ada pada Kartu A dan B, maka bilangan yang dimaksud adalah 1 + 2 (jumlah bilangan pojok kiri atas) kartu A dan B. Kalau bilangan tersebut ada di A, B, dan C, bilangan yang dimaksud adalah 1 + 2 + 4 atau sama dengan 7 (yang diperoleh dengan menambahkan bilangan-bilangan di pojok kiri atas masing-masing kartu A, B, dan C) a. Bagaimana hal ini bisa dijelaskan? b. Andai kita akan membuat kartu-kartu yang memuat bilangan dari 1 sampai dengan 15 berdasarkan aturan di atas. Coba buatkan kartu-kartunya
day 1
1
Hide problems
Indonesia Juniors 2004 day 1 OSN SMP
p1. Known points
A
(
−
1.2
)
A (-1.2)
A
(
−
1.2
)
,
B
(
0
,
2
)
B (0,2)
B
(
0
,
2
)
,
C
(
3
,
0
)
C (3,0)
C
(
3
,
0
)
, and
D
(
3
,
−
1
)
D (3, -1)
D
(
3
,
−
1
)
as seen in the following picture. Determine the measure of the angle
A
O
D
AOD
A
O
D
. https://cdn.artofproblemsolving.com/attachments/f/2/ca857aaf54c803db34d8d52505ef9a80e7130f.png p2. Determine all prime numbers
p
>
2
p> 2
p
>
2
until
p
p
p
divides
7
1
2
−
3
7
2
−
51
71^2 - 37^2 - 51
7
1
2
−
3
7
2
−
51
. p3. A ball if dropped perpendicular to the ground from a height then it will bounce back perpendicular along the high third again, down back upright and bouncing back a third of its height, and next. If the distance traveled by the ball when it touches the ground the fourth time is equal to
106
106
106
meters. From what height is the ball was dropped? p4. The beam
A
B
C
D
.
E
F
G
H
ABCD.EFGH
A
BC
D
.
EFG
H
is obtained by pasting two unit cubes
A
B
C
D
.
P
Q
R
S
ABCD.PQRS
A
BC
D
.
PQRS
and
P
Q
R
S
.
E
F
G
H
PQRS.EFGH
PQRS
.
EFG
H
. The point K is the midpoint of the edge
A
B
AB
A
B
, while the point
L
L
L
is the midpoint of the edge
S
H
SH
S
H
. What is the length of the line segment
K
L
KL
K
L
? p5. How many integer numbers are no greater than
2004
2004
2004
, with remainder
1
1
1
when divided by
2
2
2
, with remainder
2
2
2
when divided by
3
3
3
, with remainder
3
3
3
when divided by
4
4
4
, and with remainder
4
4
4
when divided by
5
5
5
?