MathDB
Problems
Contests
National and Regional Contests
Indonesia Contests
Indonesia MO
2016 Indonesia MO
7
7
Part of
2016 Indonesia MO
Problems
(1)
r_1+r_2+r_3+...+r_{p-1}=\frac{p^2(p-1)}{2} where r_k = remainder k^p : p^2
Source: Indonesia MO (INAMO) 2016 P7
9/14/2018
Suppose that
p
>
2
p> 2
p
>
2
is a prime number. For each integer
k
=
1
,
2
,
.
.
.
,
p
−
1
k = 1, 2,..., p-1
k
=
1
,
2
,
...
,
p
−
1
, denote
r
k
r_k
r
k
as the remainder of the division
k
p
k^p
k
p
by
p
2
p^2
p
2
. Prove that
r
1
+
r
2
+
r
3
+
.
.
.
+
r
p
−
1
=
p
2
(
p
−
1
)
2
r_1+r_2+r_3+...+r_{p-1}=\frac{p^2(p-1)}{2}
r
1
+
r
2
+
r
3
+
...
+
r
p
−
1
=
2
p
2
(
p
−
1
)
number theory
remainder
Sum