MathDB

Problems(2)

Good n-numbers - Iran NMO 1998 (Second Round) Problem3

Source:

10/4/2010
Let nn be a positive integer. We call (a1,a2,,an)(a_1,a_2,\cdots,a_n) a good nn-tuple if i=1nai=2n\sum_{i=1}^{n}{a_i}=2n and there doesn't exist a set of aia_is such that the sum of them is equal to nn. Find all good nn-tuple. (For instance, (1,1,4)(1,1,4) is a good 33-tuple, but (1,2,1,2,4)(1,2,1,2,4) is not a good 55-tuple.)
combinatorics proposedcombinatorics
f(A,B) - Iran NMO 1998 (Second Round) Problem6

Source:

10/4/2010
If A=(a1,,an)A=(a_1,\cdots,a_n) , B=(b1,,bn)B=(b_1,\cdots,b_n) be 22 nn-tuple that ai,bi=0 or 1a_i,b_i=0 \ or \ 1 for i=1,2,,ni=1,2,\cdots,n, we define f(A,B)f(A,B) the number of 1in1\leq i\leq n that aibia_i\ne b_i. For instance, if A=(0,1,1)A=(0,1,1) , B=(1,1,0)B=(1,1,0), then f(A,B)=2f(A,B)=2. Now, let A=(a1,,an)A=(a_1,\cdots,a_n) , B=(b1,,bn)B=(b_1,\cdots,b_n) , C=(c1,,cn)C=(c_1,\cdots,c_n) be 3 nn-tuple, such that for i=1,2,,ni=1,2,\cdots,n, ai,bi,ci=0 or 1a_i,b_i,c_i=0 \ or \ 1 and f(A,B)=f(A,C)=f(B,C)=df(A,B)=f(A,C)=f(B,C)=d. a)a) Prove that dd is even. b)b) Prove that there exists a nn-tuple D=(d1,,dn)D=(d_1,\cdots,d_n) that di=0 or 1d_i=0 \ or \ 1 for i=1,2,,ni=1,2,\cdots,n, such that f(A,D)=f(B,D)=f(C,D)=d2f(A,D)=f(B,D)=f(C,D)=\frac{d}{2}.
combinatorics proposedcombinatorics