The polynomials kn(x1,…,xn), where n is a non-negative integer, satisfy the following conditions
k0=1
k1(x1)=x1
kn(x1,…,xn)=xnkn−1(x1,…,xn−1)+(xn2+xn−12)kn−2(x1,…,xn−2)
Prove that for each non-negative n we have kn(x1,…,xn)=kn(xn,…,x1). algebrapolynomialalgebra unsolved