MathDB
Problems
Contests
National and Regional Contests
Italy Contests
ITAMO
1992 ITAMO
3
3
Part of
1992 ITAMO
Problems
(1)
n distinct divisors d_1,d_2, ...,d_n of n! with n! = d_1 +d_2 +···+d_n
Source: 1992 ITAMO p3
1/31/2020
Prove that for each
n
≥
3
n \ge 3
n
≥
3
there exist
n
n
n
distinct positive divisors
d
1
,
d
2
,
.
.
.
,
d
n
d_1,d_2, ...,d_n
d
1
,
d
2
,
...
,
d
n
of
n
!
n!
n
!
such that
n
!
=
d
1
+
d
2
+
.
.
.
+
d
n
n! = d_1 +d_2 +...+d_n
n
!
=
d
1
+
d
2
+
...
+
d
n
.
Divisors
factorial
sum of divisors
number theory