MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2006 Today's Calculation Of Integral
109
109
Part of
2006 Today's Calculation Of Integral
Problems
(1)
Today's calculation of integral 109
Source: created by kunny
6/7/2006
Let
I
n
=
∫
2006
2006
+
1
n
x
cos
2
(
x
−
2006
)
d
x
(
n
=
1
,
2
,
⋯
)
.
I_n=\int_{2006}^{2006+\frac{1}{n}} x\cos ^ 2 (x-2006)\ dx\ (n=1,2,\cdots).
I
n
=
∫
2006
2006
+
n
1
x
cos
2
(
x
−
2006
)
d
x
(
n
=
1
,
2
,
⋯
)
.
Find
lim
n
→
∞
n
I
n
.
\lim_{n\to\infty} nI_n.
lim
n
→
∞
n
I
n
.
calculus
integration
trigonometry
limit
inequalities
function
calculus computations