MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2006 Today's Calculation Of Integral
126
126
Part of
2006 Today's Calculation Of Integral
Problems
(1)
Today's calculation of Integral 126
Source: Kanazawa University entrance exam 1977
7/14/2006
For
t
>
0
,
t>0,
t
>
0
,
find the minimum value of
∫
0
1
x
∣
e
−
x
2
−
t
∣
d
x
.
\int_{0}^{1}x|e^{-x^{2}}-t| dx.
∫
0
1
x
∣
e
−
x
2
−
t
∣
d
x
.
calculus
integration
logarithms
calculus computations