MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2006 Today's Calculation Of Integral
128
128
Part of
2006 Today's Calculation Of Integral
Problems
(1)
Today's calculation of Integral 128
Source: Miyazaki University entrance exam/medical 2006
7/26/2006
Prove the following inequality.
−
π
3
ln
2
+
π
3
81
<
∫
0
π
3
ln
(
cos
x
)
d
x
<
−
π
3
162
.
-\frac{\pi}{3}\ln 2+\frac{\pi^{3}}{81}<\int_{0}^{\frac{\pi}{3}}\ln (\cos x) dx<-\frac{\pi^{3}}{162}.
−
3
π
ln
2
+
81
π
3
<
∫
0
3
π
ln
(
cos
x
)
d
x
<
−
162
π
3
.
calculus
integration
logarithms
trigonometry
calculus computations