MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2006 Today's Calculation Of Integral
132
132
Part of
2006 Today's Calculation Of Integral
Problems
(1)
Today's calculation of Integral 132
Source: Osaka University entrance exam /Economics 1968
8/10/2006
Find the area of the figure such that the points
(
x
,
y
)
(x,\ y)
(
x
,
y
)
satisfies the inequality
lim
n
→
∞
(
x
2
n
+
y
2
n
)
1
n
≥
3
2
x
2
+
3
2
y
2
−
1.
\lim_{n\to\infty}(x^{2n}+y^{2n})^{\frac{1}{n}}\geq \frac{3}{2}x^{2}+\frac{3}{2}y^{2}-1.
lim
n
→
∞
(
x
2
n
+
y
2
n
)
n
1
≥
2
3
x
2
+
2
3
y
2
−
1.
calculus
integration
geometry
inequalities
limit
logarithms
calculus computations