MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2006 Today's Calculation Of Integral
134
134
Part of
2006 Today's Calculation Of Integral
Problems
(1)
Today's calculation of Integral 134
Source: Chiba University entrance exam 1968
8/10/2006
For positive integers
n
,
n,
n
,
let
A
n
=
1
n
{
(
n
+
1
)
+
(
n
+
2
)
+
⋯
+
(
n
+
n
)
}
,
B
n
=
{
(
n
+
1
)
(
n
+
2
)
⋯
(
n
+
n
)
}
1
n
.
A_{n}=\frac{1}{n}\{(n+1)+(n+2)+\cdots+(n+n)\},\ B_{n}=\{(n+1)(n+2)\cdots (n+n)\}^{\frac{1}{n}}.
A
n
=
n
1
{(
n
+
1
)
+
(
n
+
2
)
+
⋯
+
(
n
+
n
)}
,
B
n
=
{(
n
+
1
)
(
n
+
2
)
⋯
(
n
+
n
)
}
n
1
.
Find
lim
n
→
∞
A
n
B
n
.
\lim_{n\to\infty}\frac{A_{n}}{B_{n}}.
lim
n
→
∞
B
n
A
n
.
calculus
integration
limit
logarithms
calculus computations