MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2006 Today's Calculation Of Integral
139
139
Part of
2006 Today's Calculation Of Integral
Problems
(1)
Today's calculation of Integral 139
Source: Osaka City University entrance exam 2003
8/13/2006
Let
a
,
b
a,\ b
a
,
b
be real numbers. Evaluate
∫
0
2
π
(
a
cos
x
+
b
sin
x
)
2
n
d
x
(
n
=
1
,
2
,
⋯
)
.
\int_{0}^{2\pi}(a\cos x+b\sin x)^{2n}\ dx\ (n=1,\ 2,\ \cdots).
∫
0
2
π
(
a
cos
x
+
b
sin
x
)
2
n
d
x
(
n
=
1
,
2
,
⋯
)
.
calculus
integration
trigonometry
function
calculus computations