MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2006 Today's Calculation Of Integral
155
155
Part of
2006 Today's Calculation Of Integral
Problems
(1)
Today's calculation of Integral 155
Source: Kyoto University entrance exam/science 2000
9/27/2006
The sequence
{
c
n
}
\{c_{n}\}
{
c
n
}
is determined by the following equation.
c
n
=
(
n
+
1
)
∫
0
1
x
n
cos
π
x
d
x
(
n
=
1
,
2
,
⋯
)
.
c_{n}=(n+1)\int_{0}^{1}x^{n}\cos \pi x\ dx\ (n=1,\ 2,\ \cdots).
c
n
=
(
n
+
1
)
∫
0
1
x
n
cos
π
x
d
x
(
n
=
1
,
2
,
⋯
)
.
Let
λ
\lambda
λ
be the limit value
lim
n
→
∞
c
n
.
\lim_{n\to\infty}c_{n}.
lim
n
→
∞
c
n
.
Find
lim
n
→
∞
c
n
+
1
−
λ
c
n
−
λ
.
\lim_{n\to\infty}\frac{c_{n+1}-\lambda}{c_{n}-\lambda}.
lim
n
→
∞
c
n
−
λ
c
n
+
1
−
λ
.
calculus
integration
trigonometry
limit
calculus computations