MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2006 Today's Calculation Of Integral
161
161
Part of
2006 Today's Calculation Of Integral
Problems
(1)
Today's calculation of Integral 161
Source: Kogakuin University entrance exam 1992
10/18/2006
Find the differentiable function
f
(
x
)
f(x)
f
(
x
)
such that
f
(
x
)
=
−
∫
0
x
f
(
t
)
tan
t
d
t
+
∫
0
x
tan
(
t
−
x
)
d
t
(
∣
x
∣
<
π
2
)
.
f(x)=-\int_{0}^{x}f(t)\tan t\ dt+\int_{0}^{x}\tan (t-x)\ dt\ \left(|x|<\frac{\pi}{2}\right).
f
(
x
)
=
−
∫
0
x
f
(
t
)
tan
t
d
t
+
∫
0
x
tan
(
t
−
x
)
d
t
(
∣
x
∣
<
2
π
)
.
calculus
integration
function
trigonometry
logarithms
calculus computations